# SIER ELECTRONICS CO., LTD

A: No.1 Binhe nan road, Baoji, 721004,Shaanxi, China Tel: +86 917 3652001 Fax: +86 917 3652001 Email: kenny@sierelectro.com Web: www.sierelectro.com

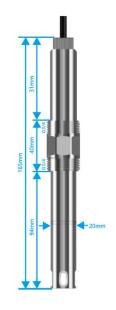
## SE-ISEP10-G Conductivity Sensor





Type 2




Type 3



Type 4

## 1. Specification

- ▶ Measure range:0...40000µS/cm optional
- > Temperature measurement range: 0.0...60.0°C
- Accuracy: ±2%FS
- ➢ Resolution ratio: 0.01µS/cm
- > Housing material: PPS, ABS, PC, SS316
- Compensation Mode: Auto/Manual
- Thread: M39\*1.5, G3/4, G1
- Power supply: DC 9~30V (Suggested 12V)
- > Output signal: RS485(Modbus RTU), 4~20mA
- Signal cable length: 5m (customizable)
- Withstand pressure range: 0...4bar
- Output Load: <750Ω</p>
- > Housing protection Grade: IP68





## 2. Pre-use instructions

2.1 The instructions apply to the Smart Conductivity Series electrodes and should be read carefully before using.

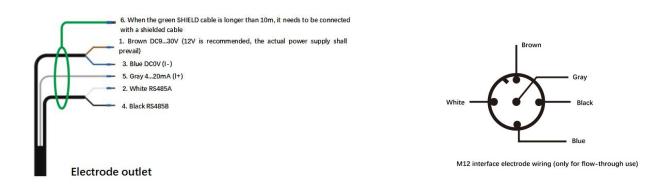
2.2 Before opening the package, please check whether there is any damage to the package. If the package is damaged, please do not open the package, but please contact the sales company, the nearest authorized agent or us directly. When the representative of the transporting arrives, please open the package together to check whether the electrodes are damaged or not, and it is recommended to take photos for evidence.

2.3 If the package is intact but the electrode is damaged, please contact the sales company, the nearest authorized agent or us directly, and send the electrode with the original package back.

2.4 Conductivity electrodes need to be dried before storage.

2.5 Any dirt, adhesion or scale on the front of the electrode during measurement will cause inaccuracy or fluctuation of the measurement value, so it should be cleaned and calibrated in time.

2.6 Caution: When reading register data, do not read more than 20 consecutive registers, and the unlisted address registers are not allowed to read or write data.


2.7 If you have any questions about the use of the parts, please contact our technical staff.

2.8 The contents of this manual are subject to change with the continuous improvement of the product, we will not give any notice in the manual, and we will not undertake the consequences thereof.

## 3. Wiring

3.1 Follow the instructions carefully for wiring , incorrect wiring will result in complete damage to the product.

3.2 It is strictly prohibited to supply power before all cables are connected to avoid danger. Before powering up the system, be sure to check all wiring carefully and make sure it is correct before powering up.



## 4. Electrode Polarization

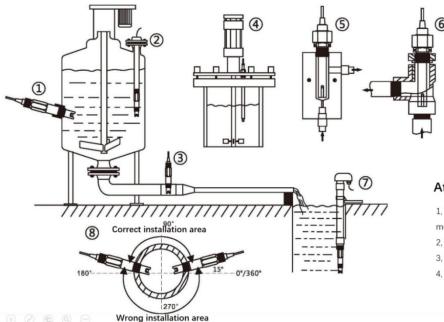
The electrode is placed in the solution to be measured and connected to the power supply, and polarization begins when the power is turned on.

## 5. Electrode calibration

Rev.:1.2

5.1 The electrode has been calibrated before shipment, and the user can use it directly.

5.2 In order to ensure the measurement accuracy of the conductivity electrode, the electrode constant should be re-calibrated before using, and at the same time, the conductivity electrode constant should be calibrated regularly, and the conductivity electrode should be replaced in time if there is a large deviation.


5.3 It is recommended to calibrate the electrode once every 1 to 2 months.

## 6 . Electrode Installation

6.1 Conductivity electrodes are generally recommended to be installed in a flow-through tank for more stable and accurate measurements.

6.2 For pipe installation, 15° - 165° is the correct installation area, the rest is the wrong area.

6.3 Installation method



①Side wall installation
②Top flange installation
③Pipe installation
④Top plug installation
⑤Flow tank installation
⑥Pipe installation
⑦Submerged installation
⑧Pipe installation angle

#### Attention for submerged installation

 This kind of installation is prone to scale during the measurement process and needs to be cleaned regularly.
 Uneven measurement.

3, Different insertion depth will affect the measured data.

4, The position of the probe must be above the sediment

**Note:** Please contact with us if there is any special requirements on function or specification.

## 7. Electrode communication

7.1 Default Communication Instructions:

Note: 1. Data starting with 0x is represented in hexadecimal.

- 2. The checksum is 16CRC with the low byte first and the high byte second.
- 3. Float (floating point number) occupies four bytes.
- 7.2 Factory Default Communication Parameters :

| Factory Default Comm        | Factory Default Communication Parameters |  |  |  |  |  |  |  |
|-----------------------------|------------------------------------------|--|--|--|--|--|--|--|
| Baud rate for communication | 9600(Default)                            |  |  |  |  |  |  |  |
| Number of data bits         | 8                                        |  |  |  |  |  |  |  |
| Number of stop bits         | 1                                        |  |  |  |  |  |  |  |
| parity calibration bit      | None                                     |  |  |  |  |  |  |  |
| Address                     | 1 (Default)                              |  |  |  |  |  |  |  |

|          | Data type      | Definition                                                                | Remark                                                                                                                         |
|----------|----------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Integer  |                | Indicates that the high and low bytes of a word element are not reversed. | Example:0x 0032 to decimal number is 50.                                                                                       |
| Floating | ABCD           | Indicates a sequential parsing                                            | Example:41 DB 72 37 to floating point is 27.4.                                                                                 |
| number   | CDAB<br>(3412) | of a double-byte component are                                            | Example:72 37 41 DB transfers to floating point, CDAB<br>changes order to ABCD .<br>The 41 DB 72 37 to floating point is 27.4. |
|          |                | but the high and low bytes of the word are not reversed.                  |                                                                                                                                |

#### 7.3 The Upper computer sends format:

## 7.4 Function Code Description

7.4.1 This product supports common function codes, such as 03, 06, 16 and so on.

7.4.2 The output register uses 16 function codes for double-word data write operations or batch writing of multiple data.

| 03 | Read single or multiple registers |
|----|-----------------------------------|
| 06 | Write Single register             |
| 16 | Write multiple registers          |

## 7.5 Read floating point number

7.5.1 The Upper computer sends format

|                                                | Device ID | Function | Register  | Starting Address |           | imber of<br>egisters | CRC16     |          |
|------------------------------------------------|-----------|----------|-----------|------------------|-----------|----------------------|-----------|----------|
|                                                | Address   | code     | High byte | Low byte         | High byte | Low byte             | high byte | Low byte |
| Example 1<br>Reading the<br>conductivity value | 0x 01     | 0x 03    | 0x 00     | 0x 00            | 0x 00     | 0x 02                | 0x C4     | 0x 0B    |
| Example 2<br>Reading the resistivity value     | 0x 01     | 0x 03    | 0x 00     | 0x 02            | 0x 00     | 0x 02                | 0x 65     | 0x CB    |
| Example 3<br>Reading the<br>temperature value  | 0x 01     | 0x 03    | 0x 00     | 0x 04            | 0x 00     | 0x 02                | 0x 85     | 0x CA    |
| Example 4<br>Reading the TDS<br>value          | 0x 01     | 0x 03    | 0x 00     | 0x 06            | 0x 00     | 0x 02                | 0x 24     | 0x 0A    |
| Example 5<br>Reading the salinity<br>value     | 0x 01     | 0x 03    | 0x 00     | 0x 08            | 0x 00     | 0x 02                | 0x 45     | 0xC9     |

#### 7.5.2 Response format of the lower computer

|                                           | Device ID<br>Address Function<br>code Byte | D     | ata Conte |       | CRC1 6 |       |                  |          |              |
|-------------------------------------------|--------------------------------------------|-------|-----------|-------|--------|-------|------------------|----------|--------------|
| Exemple 1                                 |                                            | code  | Byte      | С     | D      | А     | В                | Low byte | High<br>byte |
| Example 1<br>Conductivity value<br>return | 0x 01                                      | 0x 03 | 0x 04     | 0x 89 | 0x C7  | 0x 3E | 0x 95            | 0x B1    | 0x 9D        |
| Example 2<br>Resistivity value return     | 0x 01                                      | 0x 03 | 0x 04     | 0x 35 | 0x 1D  | 0x 45 | <sub>0x</sub> 7B | 0x 17    | 0x 4A        |
| Example 3<br>Temperature value<br>return  | 0x 01                                      | 0x 03 | 0x 04     | 0x BD | 0x E0  | 0x 41 | 0x 8C            | 0x EE    | 0x 5C        |

| Example 4<br>TDS value return                  | 0x 01 | 0x 03 | 0x 04 | 0x 08 | 0x 8C | 0x 43 | 0x 12 | 0x 88 | 0x 85 |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Example 5<br>The salinity value is<br>returned | 0x 01 | 0x 03 | 0x 04 | 0x 08 | 0x 8C | 0x 43 | 0x 12 | 0x 88 | 0x 85 |

Note: BD E0 41 8C to floating point to floating point number , CDAB change order to ABCD, that is 41 8C BD E0 to floating point is 17.59.

#### 7.6 Write floating point number

#### 7.6.1 The Upper computer sends format

|                                                    | Device ID<br>Address | Functio<br>n code | S            | Address High Low |              | Number      | Write register data with<br>Number<br>hexadecimal floating point<br>of Bytes |       |       |       | CRC1 6 |             |              |
|----------------------------------------------------|----------------------|-------------------|--------------|------------------|--------------|-------------|------------------------------------------------------------------------------|-------|-------|-------|--------|-------------|--------------|
|                                                    |                      |                   | High<br>byte | Low<br>byte      | High<br>byte | Low<br>byte |                                                                              | С     | D     | A     | В      | Low<br>byte | High<br>byte |
| Example 1<br>Write the<br>conductivity<br>constant | 0x 01                | 0x 10             | 0x 00        | 0x 0A            | 0x 00        | 0x 02       | 0x 04                                                                        | 0x 00 | 0x 00 | 0x 3F | 0x 80  | 0x 63       | 0x 80        |

#### 7.6.2 Response format of the lower computer

|                              | Device ID | Function code | Register Starting Address |          | Numbe     | er of registers | CRC16    |           |
|------------------------------|-----------|---------------|---------------------------|----------|-----------|-----------------|----------|-----------|
|                              | Address   |               | High byte                 | Low byte | High byte | Low byte        | Low byte | High byte |
| Example 1                    | 0x 01     | 0x 10         | 0x 00                     | 0x 0A    | 0x 00     | 0x 02           | 0x 61    | 0x CA     |
| Conductivity constant return |           |               |                           |          |           |                 |          |           |

Note: The conductivity constant is changed to 1.00, converted to hexadecimal 0 x 3F800000 and written into the 0x 0A register.

#### 7.7 Write an integer

#### 7.7.1 The Upper computer sends format

|                                         | Device ID<br>Address | Function code |           | er Starting<br>Idress | Write register da<br>hexadecimal floa<br>number |       | CRC1 6   |           |
|-----------------------------------------|----------------------|---------------|-----------|-----------------------|-------------------------------------------------|-------|----------|-----------|
|                                         |                      |               | High byte | Low byte              | А                                               | В     | Low byte | High byte |
| Example 1<br>Write<br>Device<br>Address | 0x 01                | 0x 06         | 0x 00     | 0x 14                 | 0x 00                                           | 0x 02 | 0x 48    | 0x 0F     |

#### 7.7.2 Response format of the lower computer

|                                          | Device ID<br>Address | Function code |           | er Starting<br>Idress | Write register da<br>hexadecimal floa<br>number |       | CRC1 6   |           |  |
|------------------------------------------|----------------------|---------------|-----------|-----------------------|-------------------------------------------------|-------|----------|-----------|--|
|                                          |                      |               | High byte | Low byte              | А                                               | В     | Low byte | High byte |  |
| Example 1<br>Device<br>address<br>return | 0x 01                | 0x 06         | 0x 00     | 0x 14                 | 0x 00                                           | 0x 02 | 0x 48    | 0x 0F     |  |

Note: To change the local address from 1 to 2, write the hexadecimal number 0x 00 02 to the 0x 00 14 register.

7.8 Calibration instructions

7.8.1. Step 1: Change the electrode constant to 1 .

Write data 1 (1 is floating point number, converted to hexadecimal as 3F 80 00 00, the sequence is ABCD, and change the sequence to CDAB, it is 00 00 3F 80) to register 0X0A.

Send command:01 10 00 0A 00 02 04 00 00 3F 80 63 80

Return data:01 10 00 0A 00 02 61 CA

7.8.2 Step 2: The electrode is cleaned and dried and placed in the standard solution.

Send command:01 03 00 00 00 02 C4 0B (read the measured value)

Return data: 01 03 04 99 9A 3F B9 24 C2

99 9A 3F B9 is the measured value, and the sequence CDAB is transposed to ABCD, it is 3F B9 99 9A, and the floating point number is 1.45, so the current measured value is 1.45, then the current measured value is 1.45ms/cm.

After the measured value is stabilized, calculate the conductivity constant, constant = standard liquid value/current measured value.

For example, if the sensor is placed in a standard liquid of 1.413mS/cm,and read the sensor

current measurement value of 1.450mS/cm

So, the constant is = 1.413/1.450 = 0.97448

To write data to the 0x0A register 0.97448 (0.97448 is a floating point number, converted to hexadecimal as 3F 79 77 85 in the order ABCD, transposed to CDAB ,it is 77 85 3F 79).

Send command: 01 10 00 0A 00 02 04 77 85 3F 79 A9 9F

Return data: 01 10 00 0A 00 02 61 CA

Complete the calibration

7.9 The instruction of floating-point number hexadecimal order

Changing the floating-point hexadecimal order

0x32 register writes data 0, the floating-point order is 1234 (ABCD.).

0x32 register writes data 1, the floating point order is 3412 (CDAB).

Example: To change the floating point order of the sensor to 3412, the instruction is as

follows

01 06 00 32 00 01 01 E9 C5

Note: When the floating point number hexadecimal order is changed to 1234, the read and write order is also 1234.

### 7.10 Description of the address

| Register Name                    | Data<br>Addresses | Date<br>Type | Length<br>(characters) | Read/Write | Remark                                                                                               |
|----------------------------------|-------------------|--------------|------------------------|------------|------------------------------------------------------------------------------------------------------|
| Conductivity value               | 0X 00 00          | Float        | 2                      | R          | The default unit is ms/c m.<br>If you need to change the<br>unit to μS/cm by<br>multiplying by 1000. |
| Resistivity value                | 0X00 02           | Float        | 2                      | R          | Ω·cm                                                                                                 |
| Temperature                      | 0X 00 04          | Float        | 2                      | R          | °C                                                                                                   |
| TDS                              | 0X 00 06          | Float        | 2                      | R          | ppm or mg/L                                                                                          |
| Salinity                         | 0X 00 08          | Float        | 2                      | R          | ppm or mg/L                                                                                          |
| Conductivity constant            | 0X 00 0A          | Float        | 2                      | R/W        |                                                                                                      |
| Compensation factor              | 0X 00 0C          | Float        | 2                      | R/W        |                                                                                                      |
| Manual temperature compensation  | 0X 00 0E          | Float        | 2                      | R/W        |                                                                                                      |
| Temperature offset               | 0X 00 10          | Float        | 2                      | R/W        |                                                                                                      |
| Baud rate                        | 0X 00 12          | Float        | 2                      | R          |                                                                                                      |
| Slave Addresses                  | 0X 00 14          | Float        | 2                      | R          |                                                                                                      |
| Filtering second                 | 0X 00 16          | Float        | 2                      | R          |                                                                                                      |
| Electrode Sensitivity            | 0X 00 18          | Float        | 2                      | R          |                                                                                                      |
| compensation mode                | 0X 00 1A          | Float        | 2                      | R          |                                                                                                      |
| P/N: Compensation Type           | 0X 00 1C          | Float        | 2                      | R          | 50.0 - PT1 000<br>50 .1 - NTC10K                                                                     |
| 4-20mA high point value          | 0X 00 20          | Float        | 2                      | R          |                                                                                                      |
| Modify the baud rate             | 0X 00 12          | signed       | 1                      | W          | 2400,4800,9600,1<br>9200,38400,43000,57600                                                           |
| Modify the slave address         | 0X 00 14          | signed       | 1                      | W          | 1 - 254                                                                                              |
| Modify the filter seconds        | 0X 00 16          | signed       | 1                      | W          | value in<br>seconds                                                                                  |
| Modifying the compensation model | 0X 00 1A          | signed       | 1                      | W          | 0 is for automatic, 1<br>is for manual                                                               |
| Adjust floating point order      | 0X 00 32          | signed       | 1                      | W          | 0 is forward, 1 is reverse.                                                                          |
| Modify the warming type          | 0X 00 33          | signed       | 1                      | W          | 0 is for PT1000 , 1 is for<br>NTC10K                                                                 |
| Restore the default values       | 0X 00 64          | signed       | 1                      | W          | 1                                                                                                    |
| Restore baud rate and address    | 0X 27 0F          | signed       | 1                      | W          | 1                                                                                                    |
| Modify 4-20mA high point value   | 0X 00 20          | Float        | 2                      | W          |                                                                                                      |

Note: When reading register data, do not read more than 20 consecutive registers, and the unlisted address registers are not allowed to read or write data.

#### 7.11 Examples of Common Instruction Sets

|  | Function | Send Command | Return Command | Remark |  |
|--|----------|--------------|----------------|--------|--|
|--|----------|--------------|----------------|--------|--|

## **Conductivity Sensor Instruction Manual**

| 1   | Read<br>Conductivity<br>value                   | 01030000002C40B            | 01030489C73E95B19D  | Convert 3E9589C7 to floating<br>point as 0 . 292.                     |
|-----|-------------------------------------------------|----------------------------|---------------------|-----------------------------------------------------------------------|
| 2   | ReadResistivity<br>value                        | 01030002000265CB           | 010304351D457B174A  | Convert 457B351D to floating                                          |
| 3   | Read<br>Temperature                             | 01030004000285CA           | 010304BDE0418CEE5C  | point as 401 9.3<br>Convert 418CBDE0 to<br>floating                   |
| 4   | Read TDS                                        | 010300060002240A           | 010304088C43128885  | point as 17.59.<br>Convert 4312088C to floating<br>point as 146 . 03. |
| 5   | Read Salinity                                   | 01030008000245C9           | 010304088C431 28885 | Convert 4312088C to floating point as 146 .03.                        |
| 6   | WriteConductivity<br>constant                   | 0110000A000204CCCD3F8CCD2A | 0110000A000261CA    | Convert 3F8CCCCD to floating point as 1.100.                          |
| 7   | WriteCompensat<br>ion factor                    | 0110000C000204D70A3CA3BB35 | 0110000C000281CB    | Convert 3CA3D70A to<br>floating<br>point as 0.02.                     |
| 8   | WriteManual<br>temperature<br>compensation      | 0110000E000204000041A0420B | 0110000E0002200B    | Convert 41A00000 to floating<br>point as 20.0.                        |
| 9   | Write<br>Temperature<br>offset                  | 0110001000020400003F80E2F3 | 01100100002400D     | Convert 3F800000 to floating point as 1.                              |
| 10  | Read Baud rate                                  | 010300120002640E           | 01030400004616499D  | Convert 46160000 to<br>floating<br>point as 9600.                     |
| 11  | Read Slave<br>Address                           | 01030040002840F            | 01030400003F80EA63  | Convert 3F800000 to floating point as 1.                              |
| 1 2 | Read<br>compensation<br>mode                    | 0103001A0002E5CC           | 01030400003F80EA63  | Convert 3F800000 to<br>floating point as 1 is<br>automatic.           |
| 13  | Read P/N:<br>Compensation Type                  | 010300C000205CD            | 010304666642483432  | Convert 424866666 to<br>floating point as 50.1.                       |
| 14  | Read 4-20mA high<br>point value                 | 010300200002C5C1           | 0103044000459CDD0A  | Convert 459C4000 to<br>floating point as 5000.                        |
| 1 5 | Write baud<br>rate                              | 0106001209602FB7           | 0106001209602FB7    | Modify to 2400                                                        |
| 16  | Writethe slave<br>address                       | 010600140002480F           | 010600140002480F    | Modify to 2                                                           |
| 17  | Write the<br>compensation<br>mode               | 0106001A000169CD           | 0106001A000169CD    | Modify to automatic                                                   |
| 18  | WriteAdjust<br>floating point<br>order          | 010600320001E9C5           | 010600320001E9C5    | Revised to CDAB ( 341<br>2)                                           |
| 19  | Write the restore default values                | 010600640001 09D5          | 010600640001 09D5   | Write 1 to confirm                                                    |
| 20  | Write the restore<br>baud rate and<br>address   | 0106270F000172BD           | 0106270F000172BD    | Write 1 to confirm                                                    |
| 21  | Write the modify 4-<br>20mA high point<br>value | 0110002000020400004120C03F | 0110002000024002    | Modified to 10                                                        |

## 8 . Maintenance and Storage

8.1 The electrodes can be cleaned of organic dirt with warm water containing detergent, or with alcohol, and after cleaning the electrodes can only be dried with a soft paper towel.

8.2 When storing the electrodes, the electrodes must be dried and stored dry.

8.3 The cable connectors must be kept clean and must not be exposed to moisture or water.

8.4 Electrochemical electrodes will naturally deteriorate when it is stored for a long period of time, so it is recommended that they be used immediately after purchase.

## 9. Trouble Shooting

9.1 If the measurement is not accurate, the main reason is that the state of the conductivity electrode has changed, so it is necessary to check whether the electrode is in good condition. Generally, it is scaling, clogging, etc. It should be maintained or replaced in time.

9.2 If the displayed value is too large, too small or no change, please check whether the electrode connection cable or electrode measurement appearance is intact.

9.3 Modbus troubleshooting.

| Issues                         | Possible Reasons                                                                                             | Solutions                                                                                                                                                                                                      |
|--------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Baud rate or stop bits do not match the<br>Modbus master device settings.                                    | Verify that the settings match the Modbus master device ,<br>and verify that the Modbus master device parity is set to<br>None.                                                                                |
| Modbus unresponsive            | RS232 or RS485 cable is failed.                                                                              | Cable replacement/repair                                                                                                                                                                                       |
|                                | There is no network offset and<br>termination , or the network offset and<br>termination is not appropriate. | Check the termination or offset settings of all<br>network devices . Only the endpoints of the<br>network should have termination turned on, and<br>only one point on the network should provide<br>an offset. |
|                                | The slave address is incorrect or the slave address is the same as the address of another bus device.        | Verify that all addresses are unique and between<br>1 and 247.                                                                                                                                                 |
|                                | Registers are not supported                                                                                  | Verify that the registers are supported.                                                                                                                                                                       |
| Modbus responses<br>abnormally | Incorrect data type                                                                                          | Verify that the requested register data type<br>matches the Modbus master request.<br>For example, it is not possible to use 2-byte<br>integer data to access some floating point                              |
|                                |                                                                                                              | type data. When requesting a floating point<br>data (2 registers/4 bytes), both registers must<br>be requested at the same time                                                                                |

## 10. Warranty and Maintenance

10.1 The warranty of the company's conductivity series sensor products is for 1 year, if the product can

not be used normally during the warranty period, please contact the company immediately. 10.2 After consulting with the company, you can send the failed product back, and please pack the product

properly before sending it back and send back the repair card with it together.

10.3 After receiving the product, we will test the product, if the product cannot be used normally due to

quality problems, we will provide free repair or replacement services; if the product can not be used

normally due to non-quality problems, the company can provide repair or replacement services for a fee.

Note: This manual applies to a variety of products in this series, please refer to the actual products. The description of the contents of the manual with the renewal of the product changes, the company does not

notify and does not undertake the consequences arising therefrom!