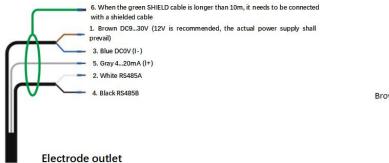

SIER ELECTRONICS CO.. LTD

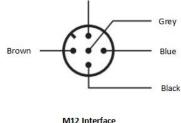
A: No.1 Binhe nan road, Baoji, 721004, Shaanxi, China
Tel: +86 917 3652001 Fax: +86 917 3652001
Email: kenny@sierelectro.com Web: www.sierelectro.com

Ammonia Nitrogen (Ion) Intelligent Electrode Instruction Manuals

Technical Parameters

- ➤ Measuring range:0.1....18000ppm
- ➤ Temperature measurement range:0.0...60°C
- ➤ Slope:56±4mV(25°C)
- Housing material:PBT anti-corrosion, PC
- Liquid interface:Ceramic Sand Core
- Connecting thread:NPT3/4, M39*1.5
- Signal cable length:5m(customized)
- ➤ Withstand pressure range:0...3bar
- Memristor:1...4MΩ
- Housing protection Grade: IP68
- Output:4.... .20mA or RS485

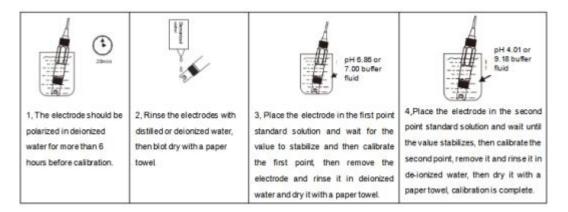



Pre-use instructions

- Please study these instructions carefully before use.
- > Sensor sensitive membrane bulb is a perishable product, once damaged will not be able to be repaired.
- Before opening the package, please check whether there is any damage to the package. If the package is damaged, please do not open the package, but please contact the sales company, the nearest authorized agent or us directly. When the representative of the transporting arrives, please open the package together to check whether the electrodes are damaged or not, and it is recommended to take photos for evidence.
- If the package is intact but the electrode is damaged, please contact the sales company, the nearest authorized agent or us directly, and send the electrode with the original package back.
- > Do not store electrodes in distilled or deionized water.
- Any dirt, adhesion or scale on the front of the electrode during measurement will cause inaccuracy or fluctuation of the measurement value, so it should be cleaned and calibrated in time.
- The contents of this manual are subject to change with the continuous improvement of the product, we will not give any notice in the manual, and we will not undertake the consequences thereof.

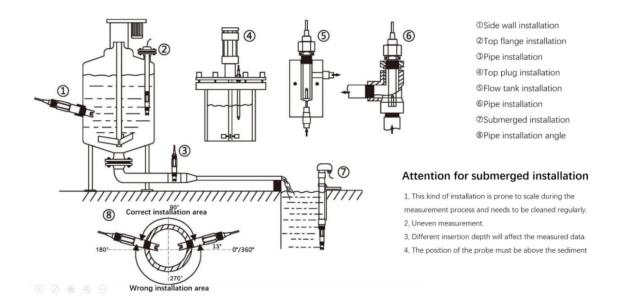
Wiring

- > Follow the instructions carefully for wiring, incorrect wiring will result in complete damage to the product.
- It is strictly prohibited to supply power before all cables are connected to avoid danger. Before powering up the system, be sure to check all wiring carefully and make sure it is correct before powering up.


White

Electrode activation

- The electrode needs to be activated in a deionized solution for more than 6 hours before use.
- Electrodes placed dry need to be activated before using.


Electrode calibration

- It is recommended that the user calibrate the electrode before using.
- For calibration, it is recommended to use the two-point method of calibration, usually calibrating the first point with a 1.000 ppm standard solution and then calibrating the second point with a 10.000 ppm standard solution to determine the slope.
- > The electrode should be calibrated in a fresh standard solution, which can be set, and the second point standard should be larger than the solution to be measured.
- It is recommended that the user calibrate every 1 month.
- > The calibration procedure is shown in the figure.

Electrode Installation

- The electrodes are generally recommended to be installed in a flow-through tank for more stable and accurate measurements.
- For pipe installation, 15° 165° is the correct installation area, the rest is the wrong area.
- Installation method.

Electrode communication

- Default Communication Instructions:
- Note: 1. Data starting with 0x is represented in hexadecimal,
 - 2. The checksum is 16CRC with the low byte first and the high byte second.
 - 3. Float (floating point number) occupies four bytes.
- Factory Default Communication Parameters :

Factory Default Communication P	Factory Default Communication Parameters							
Baud rate for communication	9600(Default)							
Number of data bits	8							
Number of stop bits	1							
Parity calibration bit	None							
Address	1 (Default)							

The Upper computer sends format:

	Data Type	Definition	Remark
Integer		Indicates that the high and low bytes of a word element are not reversed.	Example:0x 0032 to decimal number is 50.
Floating number	CDAB (3412)	of a double-byte component are reversed,	Example:72 37 41 DB transfers to floating point, CDAB changes order to ABCD . The 41 DB 72 37 to floating point is 27.4.
		but the high and low bytes of the word	

-			
- 1		are not reversed	
- 1		are not reversed.	
- 1			
- 1			

Function Code Description

- ♦ This product supports common function codes, such as 03, 06, 16 and so on.
- ♦ The output register uses 16 function codes for double-word data write operations or batch writing of multiple data.

03	Read single or multiple registers
06	Write Single register
16	Write multiple register

Read floating point number

The Upper computer sends format

	Device	Function code	Register Starting Address		Number of	f registers	CRC16	
	Address		High byte	Low byte	High byte	Low byte	Low byte	High byte
Example 1 Reading measured value	0x 01	0x 03	0x00	0x 01	0x 00	0x 02	0x 95	0x CB
Example 2 Reading the temperature value	0x 01	0x 03	0x 00	0x 03	0x 00	0x 02	0x 34	0x 0B

♦ Response format of the lower computer

	Device			Registe	Register Starting Address				CRC16		
	ID Address	Function code	Number of Byte	С	D	Α	В	Low byte	High byte		
Example 1 Reading measured values	0x 01	0x 03	0x 04	0x 2C	0x 81	0x 40	0x 91	0x 52	0x E7		
Example 2 Reading the temperature value	0x 01	0x 03	0x 04	0x 72	0x 37	0x 41	0xDB	0x 20	0x BE		

Note:72 37 41DB to floating point, CDAB change order to ABCD, i.e. 41 DB 72 37 to floating point 27.4.

Read an integer

♦ The Upper computer sends format

	Device ID	Function code	Register Starting Address		Number o	of registers	CRC16		
	Address		High byte	Low byte	High byte	Low byte	Low byte	High byte	
Example 1									
Read Warning Status	0x 01	0x 03	0x 00	0x 07	0x 00	0x 01	0x 35	0x CB	

♦ Response format of the lower computer

	Device ID Address	Function code	Number of Byte	hexadecimal	Write register data with hexadecimal floating point number		:16
Example 1 Read				Α	В	Low byte	High byte
Warning Status	0 x 01	0x 03	0x 02	0x 00	0x 00	0x B8	0x 44

Write floating point number

♦ The Upper computer sends format

	Device ID Address	Function code		ister rting ess	Number register		Number of Byte	hexade	Write register data with hexadecimal floating point number				CRC16	
			High byte	Low byte	High byte	Low byte		С	D	Α	В	Low byte	High byte	
Example 1														
Write measured value offset	0x 01	0x 10	0x 00	0x 12	0x 00	0x 02	0x 04	0x 00	0x 00	0x 3F	0x 80	0x 63	0x 2A	

Response format of the lower computer

	Device ID Address	Function code	Register Starting Address		Number o	f registers	CRC16	
			High byte Low byte		High byte	Low byte	Low byte	High byte
Example 1								
Write measured value offset	0x 01	0x 10	0x 00	0x 12	0x 00	0x 02	0x E1	0x CD

Note:Measured value offset 1.00, the floating point number 100 to hexadecimal number 0X3F800000, high and low transposition 0X00003F80 write 0x0012.

Write an integer

♦ The Upper computer sends format

, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The opportion ballot format													
	Device ID Address	Function code	Register Starting Address		hexadeci	ster data with mal floating number	CRC16							
			High byte	Low byte	Α	В	Low byte	High byte						
Example 1														
Write Device Address	0x 01	0x 06	0x 00	0x 19	0x 00	0x 02	0x D9	0x CC						

♦ Response format of the lower computer

	Device ID Address	Function code	Register Starting Address		Write register da hexadecimal floa number		CRC1 6	
			High byte	Low byte	А	В	Low byte	High byte
Example 1								
Device address return	0x 01	0x 06	0x 00	0x 19	0x 00	0x 02	0x D9	0x CC

Note: Change the local address 1 to address 2, and write the hexadecimal number 0x 00 02 into the 0x 00 19 memory.

Calibration Instructions

Before calibration

Write the value of zero correction (i.e., the value of the first point) and the value of slope correction (i.e., the value of the second point) to the sensor before calibration If the value of zero correction is 1.000 ppm, write the data 0x3F 80 00 00 to the 0x36 register.

send the instruction :01 10 00 36 00 02 04 00 00 3F 80 60 C1.

If the value of slope correction is 10.000 ppm, write the data 0x41 20 00 00 to the 0x38 register,

send the instruction: 01 10 00 38 00 02 04 00 00 41 20 0 95.

♦ Starting calibration

Step 1

The electrode is cleaned and wiped dry and put into the first point of calibration liquid 1.000ppm . Send instruction 01 03 00 66 00 01 64 15. Read the measured AD value in register 0x66, after the measured AD value is stabilized, write an instruction to confirm the calibration to register 0x 3E. Send instruction:01 06 00 3E 0OFF A8 46

Step 2

The electrode is cleaned and wiped dry and put into the second point of slope correction fluid 10.000ppm. Send the instruction 01 03 00 66 00 01 64 15. Read the measured AD value in the register 0x66, wait until the measured AD value is stable to write the instruction to confirm the correction in the register 0x 3F. Send the instruction: 01 06 00 3F 00 FF F9 86

> Description of the address

Register Name	Data Addresses	Date Type	Length (characters)	Read/Write	Remark
Measured value	0x 00 01	Float	2	R	Measurement storage location
Temperature measurement value	0x 00 03	Float	2	R	Measured temperature storage location
Current output value	0x 00 05	Float	2	R	Current output based on
					ON/mV measurements
Warning	0x 00 07	Integer	1	R	00:Normal 01:Measurement exceeds upper limit; 02:Measurement exceeds lower Limit 03:Temperature exceeds upper limit; 04:Temperature exceeds lower limit
Measurement mode	0x 00 08	Integer	1	R/W	00: ION; 01: mV
Measurement upper limit	0x 00 0A	Float	2	R/W	Measurement value upper limit (20mA corresponding value)
Measurement lower limit	0x 00 0C	Float	2	R/W	Measurement value lower limit (4mA corresponding value)
Temperature upper limit	0x 00 0E	Float	2	R/W	Temperature value upper value
Temperature lower limit	0x 00 10	Float	2	R/W	Temperature value lower value
Measured value offset	0x 00 12	Float	2	R/W	Corrected measured values

Temperature offset	0x 00 14	Float	2	R/W	Corrected Temperature offset
Damping factor	0x 00 16	Integer	1	R/W	0-10
Device address	0x 00 19	Integer	1	R/W	1-255
Baud rate	0x 00 1A	Integer	1	R/W	0=2400, 1=4800,2=9600,3=19200,4=38400
Restore the factory	0x 00 1B	Integer	1	W	
mV calibration value	0x 00 30	Float	2	R/W	
Calibration Slope	0x 00 34	Float	2	R	-0.1984
First Point Calibration Fluid	0x00 36	Integer	2	R/W	1.000
Second Point Calibration Fluid	0x 00 38	Integer	2	R/W	10.000
Manual temperature	0x 00 3A	Float	2	R/W	25℃
Zero calibration	0x 00 3E	Integer	1	W	
Slope Correction	0x 00 3F	Integer	1	W	
Measure ADC	0x 00 66	Integer	1	R	

> Examples of Common Instruction Sets

	Function	Send Command	Return Command	Remark
1	Read Measured value	01 03 00 01 00 02 95 CB	01 03 04 2C 81 40 91 52 E7	The 2C814091 for serial number 40912C81 and transfers to floating point is 4.53.
2	Read temperature measured value	01 03 00 03 00 02 34 0B	01 03 04 72 37 41 DB 20 BE	The 723741DB for serial number 41DB7237 transfers to floating point is 27.4.
3	Read current output value	01 03 00 05 00 02 D4 05	01 03 04 00 00 41 40 CB 93	The 00004140 for serial number 41400000 and transfers to floating point is 12.00.
4	Read Warning	01 03 00 07 00 01 35 CB	01 03 02 00 00 B8 44	The 0000 is current status.
5	Write Measurement mode	01 06 00 08 00 01 C9 C8	01 06 00 08 00 01 C9 C8	Set to mV mode.
6	Write Measurement upper limit	01 10 00 0A 00 02 04 00 00 41 20 42 58	01 10 00 0A 00 02 61 CA	The measurement upper limit is 10.00.
7	Write Measurement lower limit	01 10 00 0C 00 02 04 00 00 3F 080 E3 AA	01 10 00 0C 00 02 81 C8	The measurement lower limit is 1.00.
8	Write Temperature upper limit	01 10 00 0E 00 02 04 00 00 42 C8 43 15	01 10 00 0E 00 02 20 0B	The temperature upper limit is 100.00.
9	Write Temperature lower limit	01 10 00 10 00 02 04 00 00 40 A0 C3 1B	01 10 00 10 00 02 40 0D	The temperature lower limit is 5.00.
10	Write Measured value offset	01 10 00 12 00 02 04 00 00 3F 80 63 2A	01 10 00 12 00 02 E1 CD	Set to 1.00.
11	Write Temperature offset	01 10 00 14 00 02 04 00 00 3F 80 E3 00		Set to 1.00.
12	Write Damping factor	01 06 00 16 00 01 A9 CE	01 06 00 16 00 01 A9 CE	Set to 1.
13	Write Device address	01 06 00 19 00 02 D9 CC	01 06 00 19 00 02 D9 CC	Set to 2.

14	Write Baud rate	01 06 00 1A 00 00 A8 0D	01 06 00 1A 00 00A8 0D	Set to 2400.
15	Write Restore the factory	01 06 00 1B 00 FF B9 8D	01 06 00 1B 00 FF B9 8D	Send it once to restore factory default.
16	Write mV calibration value	01 10 00 30 00 02 04 00 00 42 AC C0 66	01 10 00 30 00 02 41 C7	Write to mV standard fluid value 86mV.
17	Read Calibration Slope	01 03 00 34 00 02 85 C5	01 03 04 CC CD 3E 4C 45 09	The CCCD3E4C for serial number 3E4CCCD and transfers to floating point is 0.2.
18	Write the First Point Calibration Fluid	0110003600020400003F80 60 C1	01 10 00 36 00 02 A1 C6	Set to 1.000
19	Write the Second Point Calibration Fluid	0110003800020400004120 C0 95	01 10 00 38 00 02 C0 05	Set to 10.000
20	Write Manual temperature	01 10 00 3a 00 02 04 00 00 41 A0 40 EC	01 10 00 3A 00 02 61 C5	Set to 20.0.
21	Write Zero Correction	01 06 00 3E 00 FF A8 46	01 06 00 3E 00 FF A8 46	Confirmation of corrected zero point
22	Write Slope Correction	01 06 00 3F 00 FF F9 86	01 06 00 3F 00 FF F9 86	Confirmation of corrected slope.
23	Read Measure AD	01 03 00 66 00 01 64 15	01 03 02 2E E0 A4 6C	2EE0 transfers to integer is 12000.

Maintenance and Storage

After rinsing the electrodes only use soft paper towels to absorb the water, do not rub the sensitive membrane.

- When storing the electrodes, you must screw on the protective sleeve, which must contain a soaking solution to keep the electrode bulb moist.
- When you notice white potassium chloride crystals accumulating on the electrode, this salty substance will not affect use, simply rinse the electrode with distilled water to remove the crystals and then vacuum it dry.
- > The cable connector must be kept clean and must not be exposed to moisture or water.
- The electrodes should not be stored dry for long periods of time or with dry media attached to the surface.

 Dry electrodes should be activated in a suitable preservation solution before use.

Maintenance Frequency:

Maintenance task	Recommended maintenance frequency	
Cleaning sensor	Cleaning every 30 days	
Check the sensor for damage	Cleaning every 30 days	
Calibration sensors (if required by the competent	Performed according to the maintenance	
authority)	schedule required by the competent authority	

Trouble Shooting

- When the measurement is not allowed to use, the general failure rate of the meter is low, mainly because the state of the pH electrode has changed, so you need to check whether the pH electrode is in good.. The pH electrode is not easy to be damaged, usually the bulb is broken, scaling, reference poisoning, clogging, etc., should be timely maintenance or replacement.
- If the displayed value is too large, too small or no change, please check whether the electrode connection cable or electrode measurement appearance is intact.

Modbus troubleshooting:

Issues	Possible Reasons	Solutions		
	Baud rate or stop bits do not match the Modbus master device settings.	Verify that the settings match the Modbus master device , and verify that the Modbus master device parity is set to None.		
Modbus	RS232 or RS485 cable is failed.	Cable replacement/repair		
unresponsive	There is no network offset and termination , or the network offset and termination is not appropriate.	Check the termination or offset settings of all network devices. Only the endpoints of the network should have termination turned on, and only one point on the network should provide an offset.		
	The slave address is incorrect or the slave address is the same as the address of another bus device.	Verify that all addresses are unique and between 1 and 247.		
	Registers are not supported	Verify that the registers are supported.		
Modbus responses abnormally	Incorrect data type	Verify that the requested register data type matches the Modbus master request. For example, it is not possible to use 2-byte integer data to access some floating point type data. When requesting a floating point data (2 registers/4 bytes), both registers must be requested at the same time		

Warranty and Maintenance

- The company from the time of purchase of customers on the instrumentation sensor has a one-year warranty, as long as the warranty period is not caused by improper use of non-human damage, please prepaid freight will be properly packaged instrumentation shipped back to you free of charge to repair, the company will be based on the actual instrumentation of the damage to analyze the cause, beyond the conditions of the warranty, you need to charge the cost of repairs.
- Any reason for repair must be approved by our customer service department before returning, after the application is approved, please return the repair card with the repaired goods, the returned goods must be carefully packed to avoid damage during transportation and insured, our company will not be responsible for any damage caused by the lost or shoddy packing of the returned goods.